

SCHIFERVISION USER GUIDE

 Page 1 from 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

1 Contents

1 Contents ... 1

2 What is SchiferVision ... 3

3 The architecture of SchiferVision .. 3

3.1 First Step: Developing a project... 3

3.2 Second Step: Executing the project ... 4

3.2.1 First possibility: Using SchiferVisionProjectDeveloper 4

3.2.2 Second possibility: Using the BatchProcessor-Tool .. 5

3.2.3 Third possibility: Using the CommandLineProcessTool 6

3.2.4 Fourth possibility: Using your own .Net-Application .. 6

4 Key Features .. 6

5 Core Concept Basics .. 7

6 Core Concept ... 8

6.1 Common Objects .. 8

6.2 A deeper look at controlling steps ...10

7 Installation Guide ...11

8 System Requirements ...11

9 SchiferVisionProjectDeveloper ..12

9.1 Running SchiferVisionProjectDeveloper ...12

9.2 User Interface ...12

9.2.1 Menu Project ...13

9.2.2 Menu Image ..15

9.2.3 Menu View ..17

9.2.4 Menu Options ..20

9.2.5 Menu Help ...21

9.3 Project Steps Grid: ...22

9.3.1 Project Step Context Menu..23

9.3.2 Grid Context Menu ..24

9.4 Project Steps Properties ...26

9.4.1 Section Input Images ...26

9.4.2 Section General ..27

9.4.3 Section Calculated Fields ..28

9.4.4 Section Calculated Objects ...29

 Page 2 from 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

9.4.5 Section Help ..29

9.4.6 Info Field ...29

9.5 Image Context Menu ..29

9.6 Image Section ..33

9.7 Running Sample Projects ...33

9.8 LiveTryFilter ...35

9.9 ShowObject ..36

10 Filter Steps General ...38

10.1 Understanding masked filtering ..38

10.2 Understanding Textures, Texturer and TexuredMerging ..39

10.2.1 Texturer ...41

10.2.2 TexturedMerge ..41

10.3 Understanding Lists of CommonObjects ..43

10.4 Understanding AddObjectToObjectList-Filter..43

10.5 Understanding SingleValueStorage ..44

10.6 Difference between Subfilter and Subproject ..45

10.7 Using a subproject with InputVariables ...45

11 Programming / Referencing SchiferVision Engine ..46

11.1 Setting Parameters...46

11.2 Getting Images of the filter chain ..47

11.3 Setting the CountProjectRuns ..47

11.4 Breaking the execution ...47

11.5 Building your own filter ...47

11.5.1 Using LiveTry ..50

11.5.2 Serialization ..51

12 Configure SchiferVisionEngine ..52

12.1 TraceLevel ...52

12.2 AllowApplyBreak ..52

 Page 3 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

2 What is SchiferVision
SchiferVision is a simple-to-use image processing tool, which allows building a chain of

image processing filters and saving this chain as a project for further use. This further usage

is shown in section “Second Step Using SchiferVisionProject” below.

3 The architecture of SchiferVision
SchiferVision works with a two-step concept. The first step is the development of a project,

which is a chain of different filters. More about filters later. You can then save your project

and use it over and over again.

The second step is executing this project to realize some imaging tasks for a certain image, a

folder of images or an image selection.

You can use the SchiferVisionProjectDeveloper, the Batch Processor or the

CommandLineProcessTool to execute a project, or you can build your own .Net-Application

and use the SchiferVisionEngine to execute the project.

3.1 First Step: Developing a project

SchiferVisionProject

FilterChain

 Filter 1

 Filter 2

 Filter 3

 ….

SchiferVisionProjectDeveloper

g
e
n

e
ra

te
s

 Page 4 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

3.2 Second Step: Executing the project

3.2.1 First possibility: Using SchiferVisionProjectDeveloper

 SchiferVisionEngine
 SchiferVisionProjectDeveloper

SchiferVisionProject

FilterChain

 Filter 1

 Filter 2

 Filter 3

 ….
lo

a
d

s

uses

integrated

W
o
rk

 o
n

 a
ll im

a
g
e

s
 in

 fo
ld

e
r

 Page 5 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

3.2.2 Second possibility: Using the BatchProcessor-Tool

SchiferVisionEngine BatchProcessor

SchiferVisionProject1

FilterChain

Filter 1

Filter 2

Filter 3

….

lo
a

d
s

uses

integrated

W
o
rk

 o
n
 a

ll im
a
g
e
s
 in

 fo
ld

e
r

SchiferVisionProject2

FilterChain

Filter 1

Filter 2

Filter 3

….

lo
a

d
s

multiple ...

W
o
rk

 o
n
 a

ll im
a
g
e
s
 in

 fo
ld

e
r

multiple ...

 Page 6 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

3.2.3 Third possibility: Using the CommandLineProcessTool

If you want to start a project from the command line or from a not-.Net-application you may

use the CommandLineProcessTool. The CommandLineProcessTool can work on single

images or folders. You find the CommandLineTool.exe in the SchiferVision-folder of your

program files or you use “Create Package for .Net Usage” where you find everything you

need to use your project (Compare section Menu Project -> Create Package for .Net Usage).

3.2.4 Fourth possibility: Using your own .Net-Application

4 Key Features

 Use filters to calculate parameters of following filters

 Use subprojects to easily reuse your development

 Your .Net-Application

SchiferVisionProject

FilterChain

 Filter 1

 Filter 2

 Filter 3

 ….

 SchiferVisionEngine
references

 Page 7 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

 An interactive developing Gui, which offers a lot of features for fast development of

your imaging projects.

 The Gui offers live trying of filters for fast finding of accurate parameter values.

 View the output of each filter

 Visualize calculated objects

 Build your own ShortList projects and apply them with a single click

 Many sample projects which show a lot of different image processing techniques

 Encryption of the project to save your know how

 The plugin concept for filters allows building your own filters without compiling any

source (for developers).

 More than 300 predefined filter types to meet a lot of needs of image processing.

Many of them are licenced under various open source licences. So be careful when

using them. (Compare section Menu Project -> Create Package for .Net Usage)

 Use the SchiferVision engine in your own .Net applications. Write your own

applications and use your imaging projects directly in these applications (for

developers).

5 Core Concept Basics
The main concept consists of four different base types of filters in the filter chain:

1. Direct manipulating steps

2. Calculating steps

3. Controlling steps

a. Skip filter steps in certain cases (ConditionalSkipFilterStep)

b. Jump to filter steps in certain cases (ConditionalJumpToFilterID)

c. Loop filter steps (LoopOverObjectUntilFilterID)

d. BreakLoop filter steps (BreakLoop)

e. ContinueLoop filter steps (ContinueLoop)

4. Subprojects

The first one manipulates the image. However it can calculate values or “built-in-objects” as

well.

The second one calculates values or “built-in-objects” which serve as parameter for direct

manipulating steps or other calculating steps.

The third one offers the flexibility of skipping filter steps in certain cases or jumping to other

filter steps. Furthermore you can loop certain steps over an array of “built-in-objects”.

The fourth one offers the possibility to execute another project in your current project as

single filter step. This is very powerful to generate clearly arranged large projects. Of course

you may use some projects in many other projects as subprojects. If you change this project,

it will change wherever you use it as a subproject.

This flexible concept allows building powerful image processing projects and is, above all,

simple to use.

To demonstrate this concept, let us take a look at some simple image processing tasks.

In our first sample we have images which we want to enhance and scale.

 Page 8 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

As enhancement we take a contrast correction with a fixed correction value.

The scaling should be a fixed factor of the original image.

So we need two filter steps:

ContrastCorrection -> Resize

Both filter steps manipulate the image directly and are therefore direct manipulating steps.

Now consider that not all of your input images look great after contrast correction with a fixed

value. Fortunately SchiferVision offers the possibility of calculating input parameters for filter

steps. To calculate the contrast correction value, we can use a calculating step, which

individually calculates some statistics of every input image and so generates an individual

contrast correction value for each input image.

StatisticsAsCalculation (output: calculated Parameter) -> ContrastCorrection (input:

calculated Parameter) -> Resize

Now consider furthermore that some of your images may need saturation correction, but only

a few of them. And this is where the third member, the controlling step, comes in. With this

filter type it is possible to skip the saturation under certain circumstances. To calculate the

condition, we can use a calculating step again. So we may have the following filter steps:

StatisticsAsCalculation (output: calculated parameter) -> ContrastCorrection (input:

calculated parameter) -> StatisticsAsCalculation (output: calculated parameter) ->

ConditionalSkipFilterStep (input: calculated parameter) -> SaturationCorrection -> Resize

So now we have a complete image-processing project which we can save for future use.

You can use it directly in SchiferVisionProjectDeveloper for application on single images or

on an entire folder of images.

There is no need of programming know how; however, you can use the SchiferVisionEngine

without the SchiferVisionProjectDeveloper directly in your .Net-Applications. For further

information on this topic, refer to section Programming / Referencing SchiferVision Engine.

Furthermore you can build your own filters and easily plug them to SchiferVision. For further

information on this topic refer to section Programming / Referencing SchiferVision Engine as

well.

6 Core Concept

6.1 Common Objects

As described in section “Core Concept Basics”, there are these four types of filters. The

calculating step type generates different types of objects, which we now want to have a look

at.

There are simple types like:

 Integer values: e. g. 1234

 Decimal values (float and double precision): e.g. 1234.1234

 Page 9 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

 Strings: e.g. ABCD

There are advanced types like:

 A list of integer, double values (referred to as TSIntList or TSDoubleList): e.g. 1234,

5678, 4321, 8765 …

 A dictionary of double values (an integer Index and its corresponding double value,

referred to as TSDictionaryList): e.g. [1, 232.2323], [2, 32.343] …

 Circle: represents a circle by its location and its radius (referred to as TSCircle)

 Ellipse: represents an ellipse by its central point, size and rotation angle (referred to

as TSEllipse)

 Rectangle: represents a rectangle by its location and width, height and rotation angle

(referred to as TSRectangle)

 Point: represents a point by its X- and Y- coordinates (referred to as TSPoint)

 Line: represents a line by its starting- and endpoint (referred to as TSLine)

 CircleList: represents a list of circles (referred to as TSCircleList)

 EllipseList: represents a list of ellipses (referred to as TSEllipseList)

 RectangleList: represents a list of circles (referred to as TSRectangleList)

 PointList: represents a list of points (referred to as TSPointList)

 PointListList: represents a list of PointLists, e.g. for several contours (referred to as

TSPointListList)

 LineList: represents a list of lines (referred to as TSLineList)

 BlobContainer: represents a container for blobs (connected white objects in images

with different background) (referred to as TSBlobContainer)

 HomMat2D: represents a homogenous translation matrix, e.g. for rectifying images.

(referred to as TSHomMat2D)

 DenseHistogram: represents a DenseHistogram. (referred to as TSDenseHistogram).

Only available with the Emgu-extension.

 Character: represents a single character, which was recognized with OCR. The

advantage over a normal string is that possible alternatives and confidences are

available for further use as well (referred to as TSCharacter)

 CharacterList: represents a list of characters (referred to as TSCharacterList)

 ImageList: represents a list of images (referred to as TSImageList)

 FloatMatrix: represents a two dimensional array of float values (referred to as

TSFloatMatrix)

 LocatedString: represents a string and its location (referred to as TSLocatedString

 LocatedStringList: represents a list of LocatedStrings (referred to as

TSLocatedStringList)

 CommonObjectList: represents a list of CommonObjects. The list can host different

kinds of CommonObjects. (referred to as TSCommonObjectList)

 CommonObjectDictionary: similar to CommonObjectList, it hosts different kinds of

CommonObjects. Here the list is not indexed, but a string is used as key to access

the elements. (referred to as TSCommonObjectDictionary)

 StringDictionary: represents a dictionary of strings where the key is a string as well.

(referred to as TSStringDictionary)

 StringList: represents a list of strings. (referred to as TSStringList)

 Page 10 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

There may be other types which only serve as interaction between different kinds of special

filters. E.g. if you build your own filter which outputs a special type and another filter which

uses this output as input. In that case the type is not known to the

SchiferVisionProjectDeveloper or SchiferVisionEngine, which is no problem.

SchiferVisionProjectDeveloper just displays its class name and SchiferVisionEngine passes

it through to the desired filter.

Some of these types can be saved and reloaded for further use. Refer to section View

Object.

The advanced types have one thing in common. They are referenced through their use in the

filter chain. That means one filter creates an instance of an advanced type and later filters,

which use this as calculated object, use this instance. Furthermore, that means, if this later

executed filter changes the values of the instance, the values are changed even if you use

the initial filter which created the instance as calculated object for a filter, which is executed

after the filter which changed the values. E.g. a filter with index 2 creates a TSBlobContainer.

A filter at index 3 filters the blobs in this container. A filter with an index of 4 and higher,

which references the TSBlobContainer of filter at index 2 will get the filtered TSBlobContainer

from index 3. If you need the initial values of the TSBlobContainer before the filtering, you

have to execute this step before the filtering. E.g. index 2 creates the TSBlobContainer,

index 3 gets all bounding rectangles (e.g. 400 rectangles). Index 4 filters the

TSBlobContainer. Index 5 gets all bounding rectangles of the filtered TSBlobContainer (e.g.

100 rectangles), even if it references index 2!

6.2 A deeper look at controlling steps

As pointed out in the section about core concepts basics, there are three different types of

controlling filter steps. We took a brief look at the first one (ConditionalSkipFilterStep) in this

section as well. Now let us take a deeper one at these filter types.

The first two steps both share a field called CalculatedInputCondition where you can input a

condition via Reverse Polish Notation1 (RPN), e.g. $4 > 100 ? 1 : 0. This means if the output

of the filter step with ID 4 is higher than 100, set the condition to true, else to false. Compare

to section SchiferVisionProjectDeveloper – Project Steps Properties. If this condition is true,

the following step will be skipped (ConditionalSkipFilterStep) or the execution will jump to the

filter step with the given ID and skip all steps until then (ConditionalJumpToFilterID).

Hint: If you set the JumpToFilterID of a ConditionalJumpToFilterID to 999999, this will end

the project execution if the condition is true.

Hint: If you want a filter which always jumps to a filter step with a given ID, just use a

condition which is always true, e.g. 1 == 1.

The ConditionalJumpToFilterID step offers a second working mode. If you leave the

CalculatedInputCondition empty and use the CalculatedSwitchToFilterID field instead, you

can input multiple pairs of conditions and destinations. The format is as follows:

CalculatedInputCondition1 , JumpToFilterID1 ; CalculatedInputCondition2 , JumpToFilterID2

1
 Compare http://en.wikipedia.org/wiki/Reverse_Polish_notation

 Page 11 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

… E. g.: $0 > 200 , 2 ; $0 > 150 , 4 ; $0 > 100 , 7 ; $0 < 101 , 9. The sorting of these pairs

matters as they are executed top down. The first true condition wins. To solve this example:

If the output of the filter step with ID 0 is higher than 200, the execution will jump to ID 2. If

the output is bigger than 150 but smaller than 201, the execution will jump to ID 4 and so on.

The third controlling step gives you the power of repeating steps for calculated objects, which

are returned as a list, e.g. a RectangleList. Imagine you are looking for rectangles on your

image and want to save each of these rectangles as separate images. First, you will do some

blobprocessing for example and then have a TSRectangleList. So let us take the

LoopOverObjectUntilFilterID step and repeat the steps Crop (Cropping the Image via the

rectangle) and ConvertImageFormatRenameAndSave (save the image in a certain format

and with a certain name) for the number of rectangles in the TSRectangleList. It is possible

to use several loops, even nested loops. However it is important that the loopUntilFilterID is

never the same and the loopUntilFilterID of a nested loop is executed earlier to the

loopUntilFilterID of the parent loop.

Hint: Sometimes it is useful to execute some filter steps only once, even if you apply the

project several times to many images. E.g. you load a second image which serves as mask,

or you load a classifier for OCR. These are time-consuming steps, which may be executed

only once. To achieve that there is a calculating filter that returns a counter of project runs

(GetProjectRuns), you can use this as input for a ConditionalSkipFilterStep-Filter or a

ConditionalJumpToFilterID-Filter. There is also a calculating filter that returns a counter of

loop runs (GetLoopRuns). You can use this to get elements of a list, e.g. you loop over a list

of rectangles, but you have a list of points for the same things as well. So you use

GetLoopRuns and then GetListElement and use the loop run counter as an index for the list

element to return. Do not forget: A list starts with index 0 whereas the counter starts with 1.

So you have to subtract 1 from the counter to get the right list index.

The fourth controlling step enables breaking a loop. E.g. you are looping a RectangleList and

search for a special one. When you have found it, there is no need to loop further. So you

can break the loop to speed things up.

The fifth controlling step enables continuing a loop. The steps after this one in the current

loop run will not be executed and the loop will continue with the next loop run.

Hint: The LoopOverObjectUntilFilterID step is a so-called for each loop. There is no built-in

function which loops for predefined times, let’s say 10 times. To achieve this, you can build a

TSIntList and loop over this list (GenerateIntList is a fast way to do that). You can achieve

the same by using a ConditionalJumpToFilterID-Filter and jump back if a condition is true. Be

careful using loops and jumps as there is no check if they are possible or producing endless

loops.

7 Installation Guide
Refer to the file readme.txt in the install folder.

8 System Requirements
CPU: Intel Core2 Quad Q6600 @ 2.4 Ghz (or equivalent) or higher

 Page 12 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

RAM: 4 GB

OS: Windows V/7/8/8.1 – 32 or 64-Bit, not tested on Win 10 yet

Free Disk Space: 5 GB

9 SchiferVisionProjectDeveloper
The SchiferVisionProjectDeveloper generates the filter chain (the project) and offers many

useful tools to help and assist you in developing them.

9.1 Running SchiferVisionProjectDeveloper

Start -> Programs -> SchiferVision -> SchiferVisionProjectDeveloper

9.2 User Interface

The main menu consists of the following submenus:

 Project

 Image

 View

 Options

 Help

 Page 13 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

9.2.1 Menu Project

New: Asks to save the current project, clears everything in the current project and opens a

new blank project.

Load: Opens a file browse dialog to search for a project file. By default, the file type is .tsi.

Then loads the selected file as project. Note: You can do the same by double clicking the

desired project file without opening the SchiferVisionProjectDeveloper first.

Reload: Reloads the project. E.g. if you use subprojects and made changes to these, you

have to reload the main project to work with the changed subprojects.

Save: Saves the current project. If this is the first time and no name is specified, the “Save

as” dialog will be opened.

Save as: Opens a file save dialog where you can specify a name and a location for your

project. Saves the project then.

 Page 14 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Save as ShortListProject: Saves the current project as ShortListProject. Compare “Apply

ShortListProject” in the image context menu. Make sure the project has a direct manipulating

output as it otherwise will be useless as ShortListProject.

Undo Last Change: Undoes the last change made to the project (adding, deleting, moving

of steps, changing properties and so on). 10 steps are possible.

Redo Last Change: Redoes the change of an undo-operation.

Apply to Image: Applies (runs) the project for the currently loaded image.

Apply to Folder: Opens a folder browse dialog and applies (runs) the project over all images

in the selected folder. Note: You will not see the images, but a notification about the current

work in the notification bar at the left bottom of the SchiferVisionProjectDeveloper mask. For

the output location, there are two different possibilities:

1. You use a saving filter, which does the converting and naming

(ConvertImageFormatRenameAndSave)

2. You select an output folder where the images are stored as .png with the original

name

Apply to ImageSelection: Runs the project to the image selection (Compare Menu Image-

>LoadImageSelection). The rest is similar to “Apply to Folder”.

Execute next Filter Step: Executes the selected filter step of the project steps grid. Works

only if this is possible at the current state of project execution. A great tool for debugging,

especially if you use loop filter steps.

Apply with updating Step Images: Executes the whole project but updates the picture box

whenever a direct manipulating step is executed.

Add Filter to Project: Adds a direct manipulating filter to the project. Just click on the

desired filter.

Add CalculatingFilter to Project: Adds a calculating filter to the project. Just click on the

desired filter.

Add ControlFilterStep to Project: Adds a controlling filter to the project. Just click on the

desired filter.

Add Subproject to Project: Adds a subproject to the project. This project will be executed

like a single filter step. There are two types of subprojects. One that works like a direct

manipulating step and one that works like a calculating filter step.

Add Project Steps from other Project to Project: Opens a file browse dialog and copies all

filter steps from the selected project to the current project.

Properties: Shows the properties of the current project.

 Page 15 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

 AutomaticIncrementProjectVersion: Automatically increments the built-in number

of the project version with each saving. E.g. first you have project version 2.2.1.1.

After saving the project you will have 2.2.1.2

 Password: Here you can enter the password used for encryption (Compare Encrypt

further down)

 ProjectDescription: Here you can enter a description for your project

 ProjectVersion: Here you can set a project version for handling different versions of

the same project

Encrypt: SchiferVision provides the function of encrypting your projects. If you have entered

a password in the project properties and click this button, a file with the same name but with

the ending .tsx will be generated at the original location. If you try to open such a file, you will

get a mask to enter your password. This is a powerful way to protect your work.

Create Package for .Net Usage: Opens a FolderBrowseDialog and copies all files needed

to develop you own .Net Application with the current project. Compare section

Programming/Referencing SchiferVisionEngine for further information. There is also a

MessageBox, which informs you about the possibly needed licences and the licences will be

copied as well.

Recent Projects: Shows a list of recently opened projects and loads one if you click on it

9.2.2 Menu Image

Methods for the sample image of the project

 Page 16 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Load: Opens a file browse dialog and loads the selected image to the picture box. This

image serves as initial image to which the project will be applied.

Reload: Reloads the image. E.g. after applying the project you want the original image. Only

works if you inserted the image via Load or pasting an image path and not by pasting a

bitmap.

Clear Sample Image: Removes the sample image from the project if you do not need it

anymore.

Load Image Selection: Opens a form where you can load several images from different

locations.

You can use the “Select File”-button (see 1.) which opens a FileBrowse-dialog where you

can select multiple files of one folder. If you use it again, the images will be appended if the

selection does not include the image. To delete an image, select it and press the minus at

the bottom of the grid (see 2.). You can also use the context menu (compare below) to delete

images from the selection. You can also drag and drop images from the explorer to the grid.

If you close and reopen the form by pressing Load ImageSelection again, you will see your

ImageSelection again. The project can be applied to this selection of images (Compare

Menu Project->Apply to ImageSelection). You can sort the images in the selection by drag

and drop. This is useful if you want to use the selection as TSImageList. The ImageSelection

is available for the filters as TSImaglist with an ID of -1. Compare section Project Steps

Properties -> Section Calculated Objects.

If you do not check “Load Original Image” (see 3.), only Thumbnails will be loaded. This will

drastically reduce the memory usage and you can put far more images to the selection.

When applying the project to the ImageSelection and “Load Original Image” is checked, the

1

2

3

 Page 17 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

images will be taken from the memory. If it is not checked, each image will be loaded during

project applying.

Hint: If you check “Load Original Image”, all the images are loaded to the memory, hence a

selection of large images may cause memory problems. In this case it is better to uncheck it

or to use the “Apply to Folder” method, where only one image is opened.

Hint: If you do not check “Load Original Image”, the TSImageList which is generated from the

ImageSelection (Compare above) only includes the Thumbnails.

A right click to a row in the grid opens the following context menu:

Delete Rows: Deletes the selected rows from the image selection.

Load Image to Project: Loads the focused image to the project and closes the form.

Save as: Opens a file save dialog and saves the currently visible image to the selected path.

Sizemode: Sets the size mode for the currently visible image. The size of the image will not

be changed!

RotateFlip: For rotating and flipping the currently visible image. If applied on the project, the

initial image will be taken and not the rotated. If you save the image, the rotated image will be

saved.

Load Paintform: Opens a form where you can paint basic objects directly into the image.

9.2.3 Menu View

Image Statistics: Opens a dock-window to the right or ads a new tab to this window if it is

already open. Some statistics of the currently visible image are shown. This is a great tool for

analysing images.

 Page 18 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Histogram: Opens a dock-window to the right or ads a new tab to this window if it is already

open. Here the histogram of the currently visible image is shown.

Image Infos: Opens a dock-window to the right or ads a new tab to this window if it is

already open. Some additional image information is displayed, like colour depth, unique

colours, resolution and so on.

 Page 19 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Image MetaData: Opens a dock-window to the right or ads a new tab to this window if it is

already open. The available meta data of the image is displayed.

 Page 20 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

9.2.4 Menu Options

View Options: Opens a form to define some general options concerning

SchiferVisionProjectDeveloper.

SaveShowHistogram: If checked and the histogram dock-window is open while closing

SchiferVisionProjectDeveloper, the histogram dock-window will be opened after the next start

of SchiferVisionProjectDeveloper.

SaveLastUsedShortListProject: If you used a ShortListProject, this selection will be saved

and available after restart.

SaveShowImageInfos: see SaveShowHistogram.

SaveShowImageMetaData: see SaveShowHistogram.

SaveLookAndFeel: Like SaveShowHistogram, but useful for the look and feel of

SchiferVisionProjectDeveloper. Compare to section Look and Feel.

SaveShowImageStatistics: see SaveShowHistogram.

SaveSelectionAppearence: If you changed the appearance of the selection, it will be saved

and it will look the same after a restart.

 Page 21 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

ShowCompleteErrorMessages: In case of an error, a window with a complete error

message will be opened. Here you have the possibility to send the error to us. If not set, you

will only get a small MessageBox. Compare section Configure SchiferVisionEgine-

>TraceLevel.

AllowApplyBreak: If set, it is possible to break the application by pressing “Esc”. Compare

section Configure SchiferVisionEgine->AllowApplyBreak.

MonitorMemoryUsage: If you activate this, there will be an additional column in the project

steps grid where you can see the memory usage (.Net working set) of each step in MB. This

is useful for debugging memory problems.

9.2.5 Menu Help

Info: Shows an info form of the application.

Sample Projects: Opens a sample project. Compare section Running Sample Projects.

User Guide: Opens this document.

Overview: Opens a document which gives an overview of the possibilities of SchiferVision

Demos: Opens the following form and plays a demo. The demo moves the mouse

automatically and shows how several techniques are used.

 Page 22 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

It is important that the SchiferVisionProjectDeveloper is visible. As the mouse moves

automatically, you have to press F1 to pause the demo. The demos only work with a screen

resolution of 1400 * 1000 pixels and above at 96 DPI.

Load: Opens a FileBrowseDialog to open a demo file (only used for loading demos which

are not included in the initial shipment)

Replay: Replays the whole demo.

Play: Starts the demo at the focused row of the grid.

?: Shows a description of the demo.

Send Log: If you have turned on ShowCompleteErrorMessages (Compare Menu Options ->

View Options) a log file will be generated. Here you can send the log file to us.

9.3 Project Steps Grid:

Here we can see a grid with all filter steps of the project. The columns are as follows:

 Execute/Nonexecute Step: A checkbox which determines whether this specific step

should be executed or not. This offers a comfortable way of testing and prototyping.

You may delete all the steps you do not need in the final project.

 Page 23 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

 ID: The unique ID of the filter step

 Process Step: The name of the filter

 Calculated Value: Here you can see the output value of calculating steps. If it is a

simple type, you will see the real value. If it is an advanced type, you will see the type

of output. Hint: Some direct manipulating steps may output a calculated value

additionally to manipulating the image. You can say that they serve as both filter

types. Controlling steps display the following things here:

o ConditionalSkipFilter step: true or false

o ConditionalJumpToFilterID: the JumpToFilterID or -1 if the condition is false,

or nothing if JumpToFilterID is 999999 to end the execution of the project

o LoopOverObjectUntilFilterID: the current object of the loop

o BreakLoop and ContinueLoop: nothing

 Execution Time: The execution time of this filter step. Hint:

LoopOverObjectUntilFilterID shows the total execution time of the entire loop.

 Group: You can input a free text to group some of your filter steps. You can then

select and deselect the “Execute/NonExecute Group” checkbox for an entire group.

Compare Project Step Context Menu for this feature.

 Description: Here you can enter a description for the filter step. This is without further

use and just information for you.

9.3.1 Project Step Context Menu

If you right-click on a certain filter step in the project step grid, you will open the following

context menu:

Here you can find some very useful features, which are as follows:

 Delete Steps: Deletes the selected steps

 Move Steps up: Moves the selected steps one position up. That means they will be

executed earlier. Note: You can drag the steps with the mouse as well. The step will

be inserted below the step where you dropped it. That means you cannot drag it to

 Page 24 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

the first position, only to the second and then you have to use this button to move it to

the first position.

 Move Steps Down: Moves steps down. See Move Steps up for information about

dragging the step.

 Copy Blank Steps: Copies the selected steps and adds the new steps below the

copied step. Note: The values of the properties of the new steps will be reset to

default.

 Copy Steps: Copies the selected steps and adds the new steps below the copied

step.

 Run Project to current Step: Runs the project only until the current step

 Show Image of current Step: Shows the output image of the current step, which is

very useful for testing and prototyping. Only available for direct manipulating steps

and after running the project

 Live Try Filter of Current Step: For many direct manipulating filters, a live try is

available. That means you can comfortably test the effect of changing parameters of

the certain filters on the images available. Take a look at section Live Try Filter.

 View Object of current Step: For many advanced output types from calculating filters

a viewer is available. Take a look at section View Object.

 Execute/NonExecute Group: Sets the Execute/Nonexecute Step Checkbox for the

entire group of the selected row. So for rows which have the same group (same text

in group field) the Execute/Nonexecute Step Checkbox will be checked if this

Checkbox of the selected row is currently unchecked and vice versa.

 Edit Subproject: If your project contains subprojects, you may want to edit them. Here

you can load the subproject into a new SchiferVisionProjectDeveloper Window. All

input variables will be passed to the subproject (compare section Using subprojects

with InputVariables). A great tool for debugging subprojects.

9.3.2 Grid Context Menu

If you right-click on one of column headers, this context menu opens. There you can find

several functions concerning the grid itself. One important point is the Column Chooser:

 Page 25 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

This serves as container for hidden columns. You can drag and drop them to the grid header

to show a specific column and vice versa.

UpdatePictureBox: This column is important if you do not want that a filter step updates the

image box. This is mainly used in debug mode (compare execute next filter step) for

presentation projects for “smoother” running.

WorkingSetMB: Shows the used MB of the working set. This is mainly for monitoring the

memory usage of each filter step (Compare Menu Options -> Monitor Memory Usage)

If you move the mouse over one of the column headers of the grid, you will see the following

icon:

If you press this icon, you will get the following drop down menu where you can filter the grid.

This is useful if you are searching for a special project filter step, especially in large projects

which are not organised by the step ID.

 Page 26 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

9.4 Project Steps Properties

9.4.1 Section Input Images

Here you can set the input image for the specific filter step. This may not be needed for

several steps which work with advanced objects as input.

However there are three ways of specifying the input image:

-1: Takes the last available image. This may be the initial image for the first filter step or the

last output of a direct manipulating filter step.

-2: Always takes the initial image.

IDOfFilter: Takes the image which will be the output of the filter with the corresponding ID.

This has to be a direct manipulating step and it has to be executed first. Otherwise you will

get an error.

There are filters which take other images as input, e.g. two source filter for image merging

and so on or a mask image. The mask image excludes several parts of an image from

processing (compare section Filter Steps – General).

3

4

2

1

5

 Page 27 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

To input such images, there are two possibilities. Both work via the following mask:

Here you can enter a filter ID, e.g. $4 for the output of the filter with the ID 4. This has to be a

direct manipulating step and it has to be executed first. Otherwise you will get an error. Or

you click on Open File and insert a path to an image. You can see these two possibilities in

the image above.

9.4.2 Section General

Here you can input values directly without calculating them. The allowed values can be seen

in the information field below (compare section Info Field).

Some of these values are special ones with line colours. Here you can enter the rgb-value by

writing r; g; b; or you open the following editor by clicking on the triangle on the far right side:

Here you can choose a colour or you right-click on one of the custom colour fields (see 1).

This opens a further editor:

1

 Page 28 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Here you can define a custom colour and add it to the list.

Some values may be paths and accept a string or open a Folder Browse / File Browse

dialog.

9.4.3 Section Calculated Fields

In this section you can enter the output of calculating filter steps if this is a simple type. There

are two possibilities:

If you want to input the value without manipulation, you can write: $4, whereas 4 is the ID of

the filter step which produces the output. Make sure that this filter is executed first in your

filter chain.

You can use Reverse Polish Notation2 (RPN) Infix Notation to calculate the input value. E.g.

you can write: $4 / 2 which inputs the output from step 4 divided by 2.

You can even use this method to calculate the value from multiple other filter steps, e.g.: $4

– ($2 / 2) or: $4 < $3 ? $3 : $4 …

The only thing you have to be aware of is the notation with blanks. Before and after each

$IDOfInputFilter you have to put a blank, otherwise it will result in an error.

The simple object type can be seen in the corresponding property of the section General. It

will be cast to this anyway. If the cast is not possible, it will result in an error.

List of possible operators:

Math operators: +, -, *, /, %

Compare operators: ==, !=, >, <, >=, <=

Bitwise operators: &, |, ^

2
 Compare http://en.wikipedia.org/wiki/Reverse_Polish_notation

 Page 29 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Logical operators: &&, ||

If you need more complex mathematical operators, you may use the filter MathOperator,

which offers operators like sqrt, pow, sin, cos, tan, log and so on. This filter uses RPN as

described above but uses a Postfix Notation. E.g. you can write: $4 sqrt 2 * which calculates

the square root from the output from step 4 and multiplies it by 2.

9.4.4 Section Calculated Objects

In this section you can enter the output of calculating filter steps if this is an advanced type. It

works rather straight forward via a small mask (look below) where you have to enter the ID of

the outputting filter. The allowed advanced type can be seen in the corresponding

information field.

Hint: If the advanced type is a TSImageList, you can use the ImageSelection (Compare

Menu Image) by using an ID of -1.

9.4.5 Section Help

For many filters there is help available. First click into the field (see 1) and then click on the

down arrow far right (see 2). This will open a pop-up with more information about the filter.

9.4.6 Info Field

If you click into the row of a filter property, you will see information about this property in an

info field below (number 5 in the screenshot in section Project Step Properties).

9.5 Image Context Menu

Opened with a right mouse click on the image.

1 2

 Page 30 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Methods for the sample image of the project

Load: Opens a file browse dialog and loads the selected image to the picture box. This

image serves as an initial image to which the project will be applied.

Reload: Reloads the image. E.g. after applying the project you want the original image. Only

works if you inserted the image via Load or pasting an image path and not by pasting a

bitmap.

Save as: Opens a file save dialog and saves the currently visible image to the selected path.

Copy Image: Copies the image to the clipboard.

Paste Image: Pastes an image from the clipboard.

Print Image: Prints the image.

Sizemode: Sets the size mode for the currently visible image. The size of the image will not

be changed!

 Page 31 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

RotateFlip: For rotating and flipping the currently visible image. If you apply the project, the

initial image will be taken and not the rotated. If you save the image, the rotated image will be

saved.

Image Statistics, Histogram, Image Infos, Image MetaData: See section Menu View

Copy Coordinates: Copies the coordinates of the current mouse position to the clipboard as

follows: X, Y

Copy Colour: Copies the colour of the current mouse position to the clipboard as follows: R;

G; B

Copy Rectangle: If you press the left mouse button and move the mouse to another point in

the image and then release the left mouse button, you can copy the properties of the so-

generated rectangle to the clipboard. This will be visualized by a selection rectangle. The

properties are as follows: StartPointXCoordinate, StartPointYCoordinate, Width, Height.

Copy Rectangle as PointList: Like Copy Rectangle, but generates a PointList (StartPoint;

EndPoint) of the generated rectangle. Hint: You can use the filter GeneratePointList

(Calculating Filters -> Common Objects) and then GenerateRectangle (Calculating Filters ->

Common Objects) very fast that way.

Crop Selection: Crops the selection. Hold the left mouse button and move the mouse for a

selection.

Selection Appearance: Opens the following submenu:

This menu customizes the appearance of the selection. The selection generated via holding

the left mouse button and moving the mouse helps to visualize the rectangle or the

measured distance or the xDif and yDif of two points.

You can change the colour, the stroke width and the opacity of the selection here.

Picture Box Appearance: Opens the following submenu:

This menu customizes the appearance of the picture box. You can change the BackColor

and decide whether to use it or not. This is useful for transparent images or images where

the border has nearly the same colour as the picture box background.

Generate Special Selection: Opens the following mask:

 Page 32 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

Here you can manually enter a selection. E.g. x-StartCoordinate: 200, y-StartCoordinate:

200, Width: 500 and Height: 500 will draw a selection at the position 200, 200 which is 500

wide and 500 high. You can use an aspect ratio which corrects your width and height inputs

to this aspect ratio. You can enter a name and save your selection for further use. All saved

selections are available in the DropDown menu in the upper right corner. You can delete a

saved selection by selecting it in the dropdown and pressing “Delete Selection”.

Hint: If you have generated a selection either by mouse or manually via “Generate Special

Selection”, you can change this selection either again by the mouse or by using the arrow

keys on your keyboard.

Apply ShortListProject: SchiferVision offers the possibility of generating predefined

projects which can be applied to the current image with one single click. There is no need to

load and apply it. This is very useful for many common actions you face during your work. Of

course only projects which directly manipulate an image will work. To put a project to the

ShortList you can use the built-in function “Save as ShortlistProject” in the project menu. By

clicking one of the projects it will be directly applied to the current image. E.g. you know that

you often need a higher contrast. So you can generate a project which does this and save it

as described above. From now on you can apply it just by clicking it here.

Hint: Pressing F6 directly applies the last used ShortListProject.

Load Paintform: Opens a form where you can paint basic objects directly on the image.

 Page 33 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

9.6 Image Section

1. Shows the path of the image. Via Dropdown you can select all images which are in

the same folder as the initially loaded image. If you use an image from the image

selection (compare Menu Image -> Load Image Selection -> Load Image to Project),

all paths of the images of the image selection will be available here.

2. Loads the previous or next image of the folder where the initially loaded image is

located.

3. Loads the first or last image of the folder where the initially loaded image is located.

4. Zooms the image (Just the view in this control. The image itself will not be scaled).

Only available if the size mode is set to Clip. Hint: A click with the right mouse button

resets the zoom level to 100.

5. Shows the colour of the cursor position.

6. Shows the coordinates of the cursor position.

7. If you hold down the left mouse button and move the mouse, you can select a

rectangle and measure the distance between the starting point (point where you first

pressed the left mouse button) and your current cursor position. Here you see this

distance.

8. Like 7., but does not show the length between the points but the difference of the x-

and y-coordinates.

9.7 Running Sample Projects

There are two ways of running sample projects:

1

2

1 2 2 3 3 4

5 6 7 8

 Page 34 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

1) You can use the search form:

This form initially shows all used filer types sorted alphabetically (compare a). If you want to

know how to use a special filter type, you can see which sample projects use it. You can

search in the description (hint: use %searchText to search within the text) as well (compare

b). Then you can select the desired project and load it via the button “Load Sample Project”

or by simply double-clicking on the desired project row.

2) You can directly choose one. They are grouped by varied imaging techniques.

After loading the project, a pdf-document describing the sample project will be loaded as

well.

Now there are three ways of executing these sample projects.

1. Press F5 or choose “Apply Project to Image” from menu project: Applies the entire

project to the image and shows the final result.

2. Press Ctrl+F11 or choose “Apply with Updating Step Images” from menu project:

Applies the entire project to the image but shows every single image of direct

manipulating steps.

3. Press F11 or choose “Execute next Step” from menu project: You can watch what

happens step by step.

For some sample projects, e.g. capturing projects, the default cam of the computer is used. If

such a camera does not exist, these projects return an error. In these projects it also does

not make sense to apply them to the entire image with F5. You would only see the last

captured image. So better use Ctrl+F11 for such projects.

Hint: For most sample project the size mode Squeeze works best. Go to Menu Image-

>Sizemode-> Squeeze, if not set.

Most sample projects offer more than one sample image, so navigate through the images to

test them.

b

a

c

 Page 35 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

9.8 LiveTryFilter

A live try is available for many direct manipulating filters. That means you can comfortably

test the effect of changing parameters of the specific filter on the images available. Just right-

click on the filter step in the project step grid to show the project step context menu and click

“Live try Filter of current Step”. If live try is available, the mask will be shown, otherwise you

will get a message box:

Live Try Mask:

1. On the left side you can see every available property of the filter. You can play with

the sliders or checkboxes and directly see the effect on the image.

2. The button “Reset Filter Properties” resets the values of the properties.

3. The button “Accept Values” closes the form and updates the values of the properties

in your Project Steps Properties.

4. The button “Cancel” closes the form.

5. Resizes the current image. This is for larger images, where the filter application would

be very slow. You can downsize these images here for a “smoother” LiveTry-

performance. The resizing occurs only in the LiveTry.

6. Zooms the image (Just the view in this control. The image itself will not be scaled).

7. Select Available Images opens a drop down menu (see following mask) where all

available images are shown. You then can select the desired image and test the filter

as if this would be the input image for this filter. This is very useful for fast prototyping

1

3

2

4 7 6 5

 Page 36 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

where you do not know how the filters interact best. Note: You have to run the project

first to see all available images.

Hint: If the property is a colour, you will find the normal colour editor (compare section project

steps properties / section general), on the right of this editor you will find a button “Pick

Colour in Image”:

If you click this button, you get an info message box and afterwards you can click directly into

the image to pick the colour at the place you click. The colour editor will be automatically

updated with the selected colour.

9.9 ShowObject

For many advanced output types of calculating filters a viewer is available. Imagine a list of

points or a histogram. In the project step grid you only see the type but you cannot test it to

see if it brings about the desired result. With the object viewer you have a powerful tool to

visualize these types.

Just right-click on the filter step in the project step grid to show the project step context menu

and click “View Object of current Step”. If View Object is available, the mask will be shown,

otherwise you will get a message box:

 Page 37 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

1. On the left side you can change the colour or sometimes you can use a look-up table

(lut) to colour the objects. Here you can set the stroke width in certain cases or flip the

x- and y- coordinate to visualize vertical histograms.

2. Select Available Images opens a drop down menu where all available images are

shown. You can then select the desired image and show the object directly on this

image. Note: You have to run the project first to see all available images.

3. Some objects can be saved and reloaded with the filter LoadObject for further use,

e.g. a TSPointList as shape for shape based matching.

The following mask shows a horizontal intensity histogram directly on the image:

1

2

3

 Page 38 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

10 Filter Steps General
All filters serve as product on its own and they are not directly referenced by neither the

SchiferVisionProjectDeveloper nor the SchiferVision Engine. This plugin function allows

developers to develop their own filters and use it with SchiferVision without needing to

compile SchiferVision.

However, the initially shipped filters share some common concepts for better understanding

and a simpler use.

One of these concepts are masks.

10.1 Understanding masked filtering

Masks are black and white images, which define to which part of an image a filter should be

applied. Thus it is possible for a lot of filters to apply them not to the whole image but to parts

of it. To use this concept just load a mask to the specified filter (compare section filter steps

properties). The mask has to meet the following requirements:

 The mask image has to be of the same size as the image to process.

 The white parts are the parts where the filter is applied.

A sample mask:

 Page 39 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

The original image:

The filtered image with the mask and a brightness-filter:

10.2 Understanding Textures, Texturer and TexuredMerging

A texture is somehow an intensity mask - this means a TSFloatMatrix with values between 0

and 1 for each pixel of the mask. It may be generated with special texture generators or from

a grey scale image (GenerateTextureFromGrayscaIeImage). In this case, every grey value of

the image will be divided by 256 to get a value between 0 and 1.

Hint: The filter ConvertImageToMatrix also generates a TSFloatMatrix but with the same

values as the initial grey scale image. E.g. the value of 128 will convert to 128.0 at the same

position. You can then reshape the Matrix (Filter ReshapeMatrix) to generate a row vector,

for example. This is mainly used in machine learning filters.

 Page 40 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

This image (without the red border) would produce a TSFloatMatrix with the image width and

height and values of 0.0 for the black area, 0.5 for the grey area and 1.0 for the white area.

A more common example of a texture is the famous cloud texture as follows:

So let’s take a look what we can achieve with textures. We take the cloud texture as

example. Don’t forget that the texture itself is a TSFloatMatrix, however you can easily

translate it back to a grey scale image via the filter TextureToImage. The reverse filter for

translating a grey scale image to a texture is GenerateTextureFromGrayscaleImage.

 Page 41 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

10.2.1 Texturer

This is the image filtered with the texture and a filter level of 0.8 and a preserve level of 0.2.

The Texturer works as follows:

Destination = Source * PreserveLevel + Source * FilterLevel * textureValue

textureValue represents the value of the TSFloatMatrix!

10.2.2 TexturedMerge

Now this is a very powerful filter as you can use it to “scale” another filter. Take the masked

filter described above. Here the filter is only used for certain areas of an image, but when it is

used it is always used with the same intensity. TexturedMerge now offers the possibility to

merge two images using a texture to determine which level of each image to use. If you

therefore merge the original image with an image, which is the result of this original image

applying a filter using a texture, you can handle the amount of filter application.

 Page 42 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

This is the image of our flowers where the contrast was drastically increased. Now we merge

this using the gradient texture with the original flower image. This is the result:

The gradient texture used:

The areas where the texture is nearly black fully takes the picture with the high contrast. The

areas where the texture is nearly white fully takes the original picture. The areas where the

texture is grey take a mixture of both images.

The complete formula of this filter is as follows:

Destination = Source * textureValue + SecondImage * (1.0 - textureValue)

 Page 43 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

textureValue represents the value of the TSFloatMatrix!

10.3 Understanding Lists of CommonObjects

A lot of filters work with lists of CommonObjects, so it is vital to understand how they work. A

List of CommonObjects is an indexed storage for many objects of the same type, e.g.

TSCircleList, which is a list of circles:

Index Object

0 TSCircle(Location: 200, 100; Radius: 50)

1 TSCircle(Location: 100, 50; Radius: 40)

… …

It may also be an indexed storage for many objects of different types, e.g.

TSCommonObjectList, which is a list of different CommonObjects:

Index Object

0 TSCircle

1 TSPoint

2 TSPointList

3 TSFloatMatrix

… …

All these lists start with index 0. There are filters which generate such lists and you can

iterate through a list with the LoopOverObjectUntilFilterID-filter.

To get a single object from such a list, you can use the filter GetListElement where you have

to use the index as key.

To get the amount of objects in the list, you can use the filter CountListElements. This may

be important if it is not sure that a list contains elements.

If you want to use a list with a string as key you can use a dictionary of CommonObjects:

Key Object

Whatever string you like TSCircle

A different string TSPoint

… …

To get a single object here, you must use the GetCommonObjectDictionaryElement-filter.

10.4 Understanding AddObjectToObjectList-Filter

You can build a list of CommonObjects yourself via the filter AddObjectToObjectList. This

filter is a little bit more complex and has three functions.

1. Generating a new list of CommonObjects

2. Adding an object to the end of a new list

3. Adding an object to the end of an existing list

 Page 44 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

You always have to set the correct ObjectType of the list. The

GenerateImageListWithoutImage and InputImageIndex fields are only used in case of

generating or working with a TSImageList.

If you leave the CalculatedList-field blank, the filter will generate a new list.

If you fill the CalculatedList field with a list that currently does not exist, it will also generate a

new list.

There are some scenarios where the use of this filter generates different outcomes if you use

it differently.

Imagine a loop which repeatedly executes an AddObjectToObjectList-filter: If you set the

CalculatedList field, the filter will generate a new list at the first execution and afterwards use

this generated list and add objects to it. If you do not set this field, the filter will always

generate a new list and add the current object. The second technique is good for storing a

single object.

However, imagine a loop which possibly does not always execute the

AddObjectToObjectList-filter due to skipping steps or breaking or continuing the loop or the

like. If you want to reference the list later, this will lead to an error. In this case you have to

place an AddObjectToObjectList-filter before the loop with a blank CalculatedList field and

reference this list during the loop.

Hint: There are some sample projects in the tutorial section, which demonstrate the use of

this filter.

Hint: You can create a TSIntlist with the GenerateIntList-filter in a single step.

10.5 Understanding SingleValueStorage

A single value storage stores a single double value. Its main purpose is to store a value for

comparison during a loop. For example, you want to find an object with the lowest value. You

can loop all of these objects and store the currently lowest value in the SingleValueStorage.

If you find an even lower value, you will store this value.

 Page 45 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

If you leave the CalculatedStorage field blank, a new storage will be generated and returned.

If you set the CalculatedValue field, this value will be the new value of the storage and the

storage will be returned.

If you leave the CalculatedValue field blank, the current value will be returned but not the

storage.

Hint: Store the corresponding object with AddObjectToObjectList and leave the

CalculatedList-field blank as described above. So you simulate a SingleValueStorage for this

object. You could use AddObjectToObjectList as SingleValueStorage as well. However, the

SingleValueStorage-filter is more convenient as it does not need a GetListElement-filter.

10.6 Difference between Subfilter and Subproject

A subproject is a project loaded to another project and executed as single filter step

(Compare section Menu Project). This is an important thing for reusing your know how.

Imagine several projects which all share a section of the same filter steps. This is the point

where subprojects come into play. If you later alter some parameters or filters in this section,

you just have to alter the subproject and this will affect all your projects.

A subfilter is a filter step which works as input for another filter step. This is primarily to apply

a certain filter step to all images of a TSImageList. In this case you can, for instance, insert a

resizing filter and afterwards ApplyFilterToImageList and reference the resizing filter there.

The result is that all your images of your referenced TSImageList will be resized. You do not

have to loop the TSImageList and resize in the loop.

Hint: See the tutorial section in the sample projects for understanding the use of these

techniques.

10.7 Using a subproject with InputVariables

Sometimes it might be useful to pass objects and values to a subproject. E.g. a subproject

may take a TSImageList which was generated by the main project as input and work on it.

You can pass such objects to the subproject using the field InputVariables. The syntax is as

follows: IDOfTheSourceFilterStep , IDOfTheTargeFilterStep , NameOfTheTargetField ;

IDOfTheSourceFilterStep , IDOfTheTargeFilterStep , NameOfTheTargetField ; …

IDOfTheSourceFilterStep is the ID of the filter step in the main project which outputs the

object you want to pass to the subproject.

 Page 46 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

IDOfTheTargeFilterStep is the ID of the filter step in the subproject where you want to input

the object.

NameOfTheTargetField is, as it says, the name of the field where you want to input the

object at the target filter step.

Hint: The objects are referenced. Hence it follows that changing them in the subproject

changes the object in the main project as well.

11 Programming / Referencing SchiferVision Engine
First you have to reference the SchiferVisionEngine.dll to your project. This is a .Net 4.0 C#

dll.

If you want to use filters which use opencv (Emgu-Extension), you have to set the target

platform to x86 as these are 32bit filters.

A sample implementation may be as follows. You can take a look at the attached

SchiferVisionTestProgram for further source details.

using TSImaging;

SchiferVisionProject SchiferVisionProject;

LoadProjectReturnCodes loadProjectReturnCodes =
SchiferVisionProject.LoadProject(projectFileName);
switch (loadProjectReturnCodes)
{

case LoadProjectReturnCodes.CannotLoadFile:
 MessageBox.Show("Cannot load Project");
 return;
 case LoadProjectReturnCodes.FileNotFound:
 MessageBox.Show("Cannot find ProjectFile");
 return;
 case LoadProjectReturnCodes.OK:
 break;
}

SchiferVisionProject.SampleImage = Bitmap.FromFile(imageFileName);

Image image = SchiferVisionProject.ApplyProjectToImage(out
applyProjectToImageReturnCode);

if (applyProjectToImageReturnCode != ApplyProjectToImageReturnCodes.OK)

MessageBox.Show("Cannot apply Project to Image", "Error");

11.1 Setting Parameters

You can set the input parameters of calculating- and direct manipulating filters in the

following way. This is useful if your application uses several SchiferVisionProjects and some

of the parameters depend on previous program steps:

// sample usage (Sets the Parameter "InputMax" of the Filter with the ID 0 to 144:
Hashtable htID0 = new Hashtable();
htID0["InputMax"] = 144;
SchiferVisionProject.htInputVariables[0] = htID0;

 Page 47 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

You can read the output of calculating filters in the Hashtable htCalculatingFilters. Sample

usage: Getting the output of the filter with ID 7:

CommonObjects.TSLineList lineList =
(CommonObjects.TSLineList)SchiferVisionProject.htCalculatingFilters[7];

Hint: To use CommonObjects in your application, you need to reference the

CommonObjects.dll and Interfaces.dll as well.

11.2 Getting Images of the filter chain

You can use images which are generated during applying the project as well if you do not

choose to delete them after applying (parameter for the apply-method!). Storing the images

in applications with many project-runs may cause memory problems! Getting the image of

the filter with ID 7:

Image f = (Image)SchiferVisionProject.htImagesAfterStep[7];

11.3 Setting the CountProjectRuns

If you execute your project more than once, you may need to know how often the project is

executed directly in your project. You can get this number in your project with the filter

GetProjectRuns. The following line sets the CountProjectRuns to 4.

SchiferVisionProject.CountProjectRuns = 4

11.4 Breaking the execution

You can tell the SchiferVisionProject to break its current execution. Compare section
Configure SchiferVisionEngine->AllowApplyBreak.

SchiferVisionProject.breakApplying = true;

The execution will be broken and the current state of execution will be returned.

11.5 Building your own filter

As mentioned before, SchiferVision offers the possibility of producing your own filter and plug
it into the SchiferVisionProjectDeveloper as well as the SchiferVisionEngine.

To do so, you first have to decide which kind of filter you want to develop: A direct
manipulating or an object calculating filter.
You then have to reference the Interfaces.dll and make a new class which implements the
desired interface, e.g. IFilterManipulateBitmapDirectly.
You need some properties which are necessary as follows:

The name of the filter:

private string name = "Blur";

[BrowsableAttribute(false)]

 Page 48 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

public string Name
{
 get { return name; }
 set { name = value; }
}

The name of the filter has to be the same as the name of the class and the namespace!

The category of the filter, where it should be plugged in the menu of the

SchiferVisionProjectDeveloper:

private string filterManipulateBitmapDirectlyCategory = "Convolution";

[BrowsableAttribute(false)]
public string FilterManipulateBitmapDirectlyCategory
{
 get { return filterManipulateBitmapDirectlyCategory; }
 set { filterManipulateBitmapDirectlyCategory = value; }
}

The host (This is for the plugging mechanism):

private IFilterManipulateBitmapDirectlyHost host;

[BrowsableAttribute(false)]
public IFilterManipulateBitmapDirectlyHost Host
{
 get { return host; }
 set
 {
 host = value;
 host.Register(this);
 }
}

These are the mandatory properties. You may set the [BrowsableAttribute(false)] so that it

cannot be seen in the property grid of the SchiferVisionProject developer.

In the following, a few other properties which are useful:

private int inputImageIndex = -1;

[Category("InputImages")]
[Description("Sets the InputImageIndex. -1 for previous Image, -2 for initial Image or
the index of the desired Step.")]
[BrowsableAttribute(true)]
public int InputImageIndex
{
 get { return inputImageIndex; }
 set { inputImageIndex = value; }
}

Here you see the inputImageIndex where [BrowsableAttribute(true)] is set to see this in

the property grid of the SchiferVisionProjectDeveloper. Also the category and a description

are set. This is where the property appears in the property grid and the description which is

shown under the property grid.

 Page 49 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

If you want to use the built-in ExpressionParser for calculating values, you can do this by

including Calculated in your property name, e.g. CalculatedAjustValue. You have to do this to

reference the output of other filters as well:

private string calculatedAdjustValue = "";

[Category("Calculated Fields")]
[Description("Enables calculating the Brightness Correction from previous Filters
using RPN.")]
[BrowsableAttribute(true)]
public string CalculatedAdjustValue
{
 get { return calculatedAdjustValue; }
 set { calculatedAdjustValue = value; }
}

If you want to use the built-in ExpressionParser, you have to reference the

ExpressionParser.dll and use it as follows:

if (calculatedAdjustValue != "")
 AdjustValue = Convert.ToInt32(Math.Round(Convert.ToDecimal(new
ExpressionParser.ExpressionParser().ParseExpression(calculatedAdjustValue))));

Lastly you need a method Apply. This has to return either a bitmap for direct manipulating

filters or an object for calculating filters.

public Bitmap Apply(Bitmap source)
{

// do something

return source;
}

If you want to develop a direct manipulating filter which calculates an object as well, you can

use the following property:

private object generatedOutputObjectValue = null;

[BrowsableAttribute(false)]
public object GeneratedOutputObjectValue
{
 get { return generatedOutputObjectValue; }
 set { generatedOutputObjectValue = value; }
}

Set it in your apply-method:

generatedOutputObjectValue = yourObject;

You can use the following property to set a short description which is shown as tooltip in the
SchiferVisionProjectDeveloper filter menu:

private string filterShortDescription = "OpenCVs ThresholdAdaptive";

[BrowsableAttribute(false)]
public string FilterShortDescription
{

 Page 50 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

 get { return filterShortDescription; }
 set { filterShortDescription = value; }
}

You can use the HelpTextEditor to show a readonly help in the property grid of the
SchiferVisionProjectDeveloper:

private object help = "Implementation of OpenCVs ThresholdAdaptive method!";

[Category("Help")]
[Description("Describes the filter itself.")]
[BrowsableAttribute(true)]
[Editor(typeof(LoadHelpTextEditor.LoadHelpTextEditor),
typeof(System.Drawing.Design.UITypeEditor))]
public object Help
{
 get { return help; }
 set { help = value; }
}

You can use some other built-in editors, however you can develop your own editor as well, it
just has to be a System.Drawing.Design.UITypeEditor.

11.5.1 Using LiveTry

If you want to use the LiveTry for direct manipulating filters, you can do that in the following

way:

Make a Hashtable and name it htFilterProperties:

private Hashtable htFilterProperties;

and fill it in the following way:

htFilterProperties = new Hashtable();
htFilterProperties.Add("AdjustValue", new int[] { -255, 255, 0 });

AdjustValue is the name of the property, followed by the data type as array and some
information about the boundaries and the start value. The example above generates a slider
of intvalues, which goes from -255 to 255 and the start value is set to 0.

For a double value, it works in the following way:

htFilterProperties.Add("FullnessMax", new double[] { 0, 1, 1, 100 });

This generates a slider of double values, which goes from 0 to 1 with the start value set to 1.
The last number here is a multiplier to make the slider more convenient. So the full range of
values will be multiplied with 100 to get a slider with 100 steps in this example.

Some other data types:

htFilterProperties.Add("OrientationMin", new float[] { 0, 360, 0, 100 });

Floatvalue works as double value.
You can use byte-values and int16-values in the same way as int-values.

htFilterProperties.Add("AreaCheck", false);

 Page 51 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

A Boolean value, just write the value. This will generate a checkbox.

htFilterProperties.Add("FillColor", Color.Black);

This will generate a colour edit.

private short[,] se = new short[3, 3] {
 {1, 1, 1},
 {1, 1, 1},
 {1, 1, 1}};
htFilterProperties.Add("MorphologyMatrix", se);

This demonstrates a matrix of shortValues. You can use an int-matrix in the same way.

You can use enums the following way:

DataTable dtMorphologyMethod = new DataTable();
dtMorphologyMethod.Columns.Add("1");
foreach (MorphologyMethod ecc in Enum.GetValues(typeof(MorphologyMethod)))
{
 DataRow dr = dtMorphologyMethod.NewRow();
 dr[0] = ecc.ToString();
 dtMorphologyMethod.Rows.Add(dr);
}
htFilterProperties.Add("MorphologyMethod", dtMorphologyMethod);

This will produce a dropdown-list with the values.

If your filter needs to know if it is a normal execution or a LiveTry, you can use the following

property which will be set to true during LiveTry.

bool isLiveTry = false;
[BrowsableAttribute(false)]
public bool IsLiveTry
{
 get { return isLiveTry; }
 set { isLiveTry = value; }
}

11.5.2 Serialization

If you want that your filter is saved in the project, the class has to implement the following
interface: System.Xml.Serialization.IXmlSerializable

The reader works as follows:

public System.Xml.Schema.XmlSchema GetSchema() { return null; }

public void ReadXml(System.Xml.XmlReader reader)
{
 reader.MoveToContent();
 Name = reader.GetAttribute("Name");
 InputImageIndex = Convert.ToInt32(reader.GetAttribute("InputImageIndex"));
 CalculatedInputMinRed = reader.GetAttribute("CalculatedInputMinRed");

}

The writer:

 Page 52 of 52

SchiferVision User Guide Vers. 1.0.7 18.02.2016

public void WriteXml(System.Xml.XmlWriter writer)
{
 writer.WriteAttributeString("Name", Name);
 writer.WriteAttributeString("InputImageIndex", InputImageIndex.ToString());
 writer.WriteAttributeString("FillColor_R" , FillColor.R.ToString());

}

12 Configure SchiferVisionEngine

12.1 TraceLevel

Use SchiferVisionEngine.dll.config to set the TraceLevel. Possible values are:

 Error: Shows detailed error messages, exceptions and stack trace

 Off: Shows only a message box indicating an error and the filterid and project runs

where the error has occurred.

Here is the section of the config file:

<setting name="TraceLevel" serializeAs="String">

 <value>Off</value>

</setting>

Hint: If you use the SchiferVisionProjectDeveloper option, “ShowCompleteErrorMessages” is

taken and not the config file (Compare section Menu Options).

12.2 AllowApplyBreak

You can also set if it is allowed to break the current execution of the project. In

SchiferVisionDeveloper you can press ESC and the current execution will be broken if the

following value is set to “True”. This is a good thing if you test new projects and you are not

sure whether all jumpToIDs and loopToIDs are set correctly. To break the project in the case

of an infinite loop or if the execution lasts too long, set this to “True” and press ESC as

mentioned. However, the execution time will be significantly slower if this is set to “True”.

<setting name=" AllowApplyBreak " serializeAs="String">

 <value> False </value>

</setting>

Hint: If you use the SchiferVisionProjectDeveloper, the option “AllowApplyBreak” is taken and

not the config file (Compare section Menu Options).

